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An approximate method due originally to Whitham is applied to the study of 
acoustic waves propagating in a non-grey radiating and absorbing gas, assumed 
in local molecular equilibrium. The method, which has general applicability 
in the study of non-equilibrium wave phenomena, replaces the exact governing 
equation by a set of lower-order equations that can be solved analytically in 
many cases. The use of the method is demonstrated by reconsidering the one- 
dimensional problems o f  (i) harmonic waves driven by a harmonic variation in 
either position or temperature of a planar wall and (ii) the discrete wave produced 
by the impulsive motion of a constant-temperature wall. The method greatly 
simplifies the mathematics for these problems, and comparison of the results 
with those of earlier investigators shows the approximate method to be accurate. 
Moreover, the method allows us to obtain a more systematic and complete 
analytical solution of the second problem than has been obtained by more con- 
ventional methods. 

1. Introduction 
In their mathematical aspects, this and the companion paper that follows 

are an extension of a method due originally to Whitham (1959). This method is 
suitable for the approximate solution of problems of wave propagation when 
more than one propagation speed appears in the governing differential equations, 
as is the case when non-equilibrium processes occur within the fluid. Although 
Whitham concerned himself with application to magnetohydrodynamics, his 
ideas apply generally to other dissipative processes in both linear and non- 
linear situations. Here we shall restrict ourselves to linearproblemsonly. As shown 
by Whitham, however, linear solutions are an important first step in the under- 
standing of the corresponding non-linear phenomena. 

I n  a physical sense, the present work is a continuation of recent studies of the 
interaction of radiative transfer and fluid flow in the acoustic approximation. 
It follows in particular in the spirit of papers by Vincenti & Baldwin (1962), 
Baldwin (1962), Lick (1964) and Moore (1966). (For reference to earlier work see 
the first of these; for pedagogical treatments see Vincenti & Kruger 1965, or 
Lick 1967.) As in those papers, we deal with one-dimensional acoustic waves in 
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the semi-infinite expanse of gas to one side of an infinite planar black wall. 
The gas is assumed to be thermally perfect and in local molecular equilibrium. 
In  contrast to  the previouswork, however, it is not taken to begrey (ie.  absorption 
coefficient independent of radiative frequency). Instead, non-grey effects 
are included on the basis of the generalized substitute-kernel approximation 
developed by Gilles, Cogley & Vincenti (1969). 

In  the present, paper we develop the formalism for application of Whitham’s 
method in radiative acoustics and use it to solve problems that have already 
yielded to  other methods. These are the harmonic waves due to  sinusoidal motion 
and temperature variation of the wall and the discrete wave due to impulsive 
motion of the wall a t  constant temperature. Comparison with the previous 
resu1t)s then establishes the interpretation, accuracy and usefulness of the approxi- 
mate method. In Cogley (1969) the method will be employed to solve the more 
difficult problem of the discrete wave caused by a step change in temperature of 
a motionless wall. This has previously eluded solution by other methods except 
in a very restricted way. The two papers together illustrate the power of Whit- 
ham’s approach, not only for a qualitative undcrstanding of wave phenomena, 
but for the detailed solution of specific problems. 

Whitham’s method is based on the physical idea that, in one-dimensional 
wave motion, the wave-form appears almost invariant when followed at  its 
own speed of propagation. Put  in mathematical tcrms, this idea enables one 
to replace the exact governing equation by a set of approximate, lower-order 
equations, each of which is valid in a specified region of the time-like variable. 
A different lower-order equation is obtained for each propagation speed appear- 
ing in the exact equation. The boundary conditions for the exact problem can be 
used with these lower-order equations, if one is careful to include all the boundary 
layers and purely diffusive waves present, The resulting solutions of the lower- 
order equations, obtainable in closed form in many cases, then represent portions 
of the total solution. The relatively simple form of the lower-order equations 
also tells one explicitly, without formal solution of the problem, what type of 
response to expect. The method also has the advantage of dividing the problem 
into physically meaningful parts, so that one is able to see how and why the 
resulting wave forms develop. These matters are elaborated on in fi 2 for Whit- 
ham’s simple model equation and in $ 3  for the acoustic equation of radiative 
gas dynamics. I n  the latter case we see in particular how the exact fifth-order 
equation containing four propagation speeds is replaced by four approximate 
lower-order equations. 

To test the accuracy and usefulness of the method (and, as it turns out, 
to  obtain insight into the significance of the lower-order equations), the problem 
of harmonic waves is reconsidered in $4. Vincenti & Baldwin (1962), in their 
work based on the exact equation, found the solution to be the sum of two types 
of waves, which they referred to as ‘modified-classical’ and ‘radiation-induced’. 
The approximate method essentially reproduces these results, with the modified- 
classical wave being governed by two of the four lower-order equations and the 
radiation-induced wave by the other two. One equation from each pair is valid 
in specified frequency ranges, and these frequency ranges depend in turn on the 
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dimensionless parameter that specifies the level of radiative transfer. The 
accuracy of the results, as revealed by comparison with a numerical solution 
of the exact equation, is excellent over wide ranges of frequency for all levels 
of radiative transfer. Exceptions occur in small regions of frequency, where the 
solution changes from one lower-order equation to the other, but even there 
the results are not seriously off. 

The solution for the discrete wave due to impulsive motion of the constant- 
temperature wall is obtained in $5 and $6.  For this purpose, each of the 
approximate lower-order equations is solved formally by means of the Laplace 
transform, which effectively superposes the corresponding harmonic solutions. 
Each transformed solution applies in certain ranges of the transformation vari- 
able and hence, by the Abelian theorems, in certain regions of time when the 
solution is inverted. The time regions of validity for this unsteady problem are 
determined by the frequency ranges of validity of the corresponding harmonic 
solutions and thus depend on the level of radiative transfer. As with the purely 
harmonic waves, the complete solution in a given time region is the sum of two 
of the four approximate solutions, one from the pair of lower-order equations 
that governs the modified-classical waves and one from the pair that governs the 
radiation-induced waves. These matters are set down in detailin $ 5 ,  together with 
the boundary conditions for step changes in both velocity and temperature 
of the wall. 

The application to the impulsively moving wall is given in $ 6 .  In obtaining 
the inversions of the transformed solution, advantage is taken of expansions 
consistent with the various regions of validity. This allows solutions to be ob- 
tained in closed form throughout. The final results for the wave-front, which is 
formed by the modified-classical contribution, are found to agree closely with 
those from existing studies. The main item of interest, however, is the complete 
treatment of the diffusing thermal layer that forms next to the constant- 
temperature wall even under conditions of weak radiation. This boundary layer 
comes from the radiation-induced contribution and is physically necessary under 
all conditions to bring the final temperature of the compressed gas adjacent to 
the wall back to that of the wall itself. To the order of the solution, the layer is 
found to affect only the temperature and density of the gas. The relation of these 
results to earlier studies is explained after the results are presented. 

2. Introduction to Whitham’s method 
Whitham gives a detailed discussion of his approximate method for a simple 

model equation. Certain of his results are summarized and generalized here to 
give the reader an introduction to the basic idea. Whitham’s method applies 
directly to the simplification of the governing differential equation and is not 
to be confused with other approximations that will be introduced later. These 
will serve only to simplify the formal solution of some particular approximate 
equation. 

Expressed mathematically, the basic idea of Whitham’s method is that a 
planar wave form appears almost steady or invariant when described in terms 
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of slant co-ordinates based on the wave’s particular speed of propagation. 
In  classical (i.e. non-dissipative) acoustic theory this condition is satisfied ex- 
actly in the slant co-ordinate based on the one unique speed of propagation. In  
non-equilibrium acoustic theory, more than one propagation speed may appear, 
and we must consider slant co-ordinates based on each speed separately to 
obtain an overall view of the wave phenomena. The mathematical consequence of 
the basic idea is that we can replace the exact governing differential equation by a 
set of lower-order equations, one for each propagation speed. Each of these is 
part of a valid approximation to the exact equation in a specified region of the 
independent time-like variable. Often, in particular in radiative acoustics, so- 
called degenerate speeds with values of zero and infinity appear. These degen- 
erato speeds may represent diffusive mechanisms that give rise to either boundary 
layers or purely diffusive waves.? Which of these is present depends on the 
specific equation under study and on the type of boundary condition that 
drives the wave. When the equations that govern the purely diffusive waves 
and boundary layers are included in the set of equivalent lower-order equations, 
the exact boundary conditions can be used with this set. 

Whitham’s method is of a heuristic nature and does not proceed from a mathe- 
matically rigorous argument. Its accuracy is therefore not given as an integral 
part of the method. The same lower-order equations, however, can be generated 
by formal asymptotic co-ordinate and parameter expansions, and these equiva- 
lent expansions provide insight into the accurcy of the method and show how 
and why it works. This approach has been carried through by Cogley (1968) 
for acoustic propagation with chemical non-equilibrium. The equivalent asymp- 
totic expansions are not always easily obtained for more complex problems, 
and the details of the procedure have not been carried out for the equation of 
radiative acoustics. Instead we follow a more pragmatic course and gain an 
understanding of the method by using it to solve certain example problems. 

Most of the problems with which we deal can be called signalling problems. 
These are the special form of general, one-dimensional, wave-propagation 
problems in which homogeneous initial conditions are assumed, the domain is 
the semi-infinite space, and only waves propagating to the right from adisturbance 
at the origin are considered. The disturbance is taken as a step input in some de- 
pendent variable, unless stated otherwise. 

The ideas of the preceding paragraphs can be made explicit by discussing 
Whitham’s simple, example equation 

where q5‘ is any perturbation quantity, K (assumed positive) is a given parameter 
with dimensions of (time)-l, t is the time, and x the space co-ordinate. The real, 
distinct constants cl, c2 and a are propagation speeds. Approximate equations 
governing the various wave motions implicit in (1) are found by transforming 

The expression ‘may represent’ is used here because the appearance of a zero pro- 
pagation speed does not always represent a diffusive mechanism (cf. Cogley 1968, ch. 3). 
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to slant co-ordinates for a particular propagation speed and dropping certain 
higher-order terms. The same end can be accomplished in one step in Cartesian 
co-ordinates by stating that the derivatives a/at and - c a/ax of any dependent 
variable are approximately equal for a wave travelling with speed c.  

When the speed c1 is followed, ( 1 )  may be approximated on the basis of the 
foregoing procedure by 

where ( c l -a ) / ( c l - c2 )  must be positive for a stable (i.e. damped) solution to 
exist (cf. Whitham 1959). To obtain this equation, an integration has been per- 
formed and the function of integration set equal to zero, as is appropriate when 
homogeneous initial conditions are assumed. It is to be understood that this pro- 
cedure will always be carried out where applicable. Equation (2) governs the 
wave motion only at some small time, since its solution, with a step input in 
$‘, is an exponentially damped step wave that becomes practically non-existent 
at larger times. The precise condition is that (2) is a valid approximation of (1) 
for K t  6 1. 

We follow the wave speed a in a similar manner by setting ajat r -aa/ax. 
Equation (1) may then be approximated by 

(cl - a)  (a  - c2)  a2$’ 

K -- (;+a;) $75’ = 0.t (3) 

This equation governs the wave motion for large time, since its solution is a 
wave that does not decay; it does diffuse, however, with a diffusion coefficient 
proportional to l/K. More precisely, (3) is il valid approximation of (1) for Kt 9 1. 

If c2 < 0, there is no need to follow this speed, since we are interested only 
in waves travelling to the right. Equation (1) then requires one boundary con- 
dition at x = 0 ;  (2) and (3) also require one boundary condition. Thus, the boun- 
dary condition for the exact equation (1) can also be used with these simplified 
equations. The fact that the simplified equations require fewer initial conditions 
is of no concern, since we assume the gas to be quiescent for t < 0. 

When c2 > 0, this speed must also be followed. Setting a/at z -c,a/ax leads 
to the lower-order equation 

whose solution for a step input in $‘ is an exponentially decaying step wave 
when ( a  - cz) / (c l -  c z )  is positive. Equation (1) plus two boundary conditions 
form a well-posed problem, since we now have two characteristics pointing into 
the region of interest. The simplified equations (2)-(4), on the other hand, 
each form a well-posed problem with only one boundary condition. For Kt < 1, 
(2) and (4) are simultaneously valid, and together they absorb the two exact 

t This approximate equation is not of lower order than the exact equation (1) .  This is 
due to the oversimplified example. All the problems of radiative acoustics in this work 
will have approximate equations of lower order than the exact equation. 
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boundary conditions. For Kt 1, however, (3) alone is valid, and this equation 
can absorb only one condition. The inconsistency can be resolved by assuming 
that a boundary layer exists near x = 0. An equation governing this boundary 
layer is obtained by assuming the layer to be thin, so that the x derivatives are 
much larger than the t derivatives. This boundary-layer argument is analogous 
to having a zero propagation speed appear in the exact solution. In  radiative 
acoustics we will follow a zero speed by assuming a/at = - 0 a/ax, which is essen- 
tially the same as saying that a/at < a/ax. Equation (1) is approximated accord- 

This equation is used in conjunction with (3) to absorb the two given boundary 
conditions at  the larger times in the approximate solution. 

Whitham also developed criteria for stable solutions to exist for general 
signalling equations similar to (1). Here stability means that a solution of the given 
equation does not grow without bound. It turns out that the question of stability 
is unimport,ant for our problems, i.e. the solutions that we seek are all inherently 
stable. The reader is therefore referred to Cogley (1968) for a discussion of stability 
for the radiative acoustic equation. 

3. Basis for application to radiative acoustics 
The governing equation for acoustic propagation in a non-grey radiating and 

absorbing gas has been derived by Gilles, Cogley & Vincenti (1969). As usual, 
radiative scattering, pressure, and energy density are taken to be negligible. In 
general, as in the reference, the derivation can be carried out for an imperfect gas; 
purely for convenience we here assume the gas to be thermally, but not necessarily 
calorically, perfect. Radiative effects are taken into account on the hypothesis 
of local molecular equilibrium, and a non-grey exponential (substitute-kernel) 
approximation is employed. This approximation introduces two functions 
mo(po, To) and no(po, !Po), where po and To are the undisturbed pressure and tem- 
perature respectively.? The function no is an effective frequency-averaged absorp- 
tion coefficient, and m, is associated with the rate of spontaneous emission, 
as will be pointed out later. Specific functional forms for these quantities are 
developed in the reference. Here, however, we leave the formulation general 
and carry out all work in normalized variables and parameters. 

The normalized equation governing radiative acoustics can be written in terms 
of a dimensionless potential function 4 defined by t-he relations 

f& = u = 4%,, 47 = - P h o  = - ( lho)P’/Po.  

t If the gas is strongly non-grey in the sense that the absorption coefficient is a widely 
varying function of frequency, an improved, many-parameter fit for the exact radiative 
transmission functions can be obtained by using a sum of exponentials in place of the single 
exponential used here. For each additional exponential the resulting partial differential 
equation increases by two ordors in the spatial variable (cf. Gilles, Cogley & Vinccnti 
1969). Each added exponential thus adds another radiation-induced wave to the one 
appearing here. The generality of Whitham’s method should allow one to handle these 
additional waves. 
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The normalized independent variables are E = nox and 7 = noaSut; as subscripts 
they denote partial differentiation. Normalized perturbations in velocity and 
pressure are symbolized by u andp. The convention of using unadorned symbols 
for normalized perturbation variables will be used throughout. Primed symbols 
will denote the corresponding dimensional perturbations. Symbols subscripted 
by 0 are dimensional quantities in the undisturbed reference state, which is one 
of complete equilibrium. The isentropic sound speed us, is given for the thermally 
perfect but calorically imperfect gas by 

as, = (YoPo/Po)&, 

where po is the undisturbed density and yo is the ratio of specific heats. We can 
also regard yo as a measure of the ratio of the isentropic sound speed to  the iso- 
thermal sound speed uT, = (po/po)*, i.e. 

liyo = aScs,/aT,- 

With the foregoing nomenclature, the equation of radiative acoustics can be 

where the effective non-grey Boltzmann number, a measure of the ratio of the 
mechanical to the radiative energy flux, is defined by 

The quantity 80 is the non-grey Boltzmann number introduced by Gilles, 
Cogley & Vincenti, and R is the ordinary gas constant. The symbol BT, is defined 
as 

where B, and a, are the Planck function and the volumetric absorption co- 
efficient, both functions of the spectral frequency v. The integration is over 
all frequencies for which a,, is non-zero. The precise meaning of mo is that the 
combination 4mOBTOT' gives the perturbation in the rate of spontaneous 
radiative emission per unit volume for a non-grey gas, With q5 known, the 
normalized perturbation density p 3 p'/po, temperature T = T'/To, enthalpy 
h 3 h'(yo - l)/yo RT,, and effective radiative heat flux gE = QR'(yo - l)/yo RTopoaso 
can be found from the linearized continuity equation 

P7+U[ = 0, 
the linearized equations of state 

T = p - p = h ,  

and the following relation for the radiative heat flux at frequencies where a,. 4 0 
(cf. Vincenti & Kruger 1965): !IF = $11- $E- 
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To apply Whitham's ideas we first write (6) in the signalling form 

Four distinct propagation speeds are now evident in this equation. These 
speeds appear as multiplying factors with the operator 8/86 or, equivalently, 
their inverse multiplies the operator 8/87. By virtue of the normalization, the 
isentropic speed of sound is counted as unity and the isothermal speed of sound 
as 1/Jy0. The zero propagation speed appears as a zero multiplying the operator 
8/a[. The infinite speed, because of its singular nature, appears as 1/00 multiplying 
a/&. This is merely a convention used to write the radiative acoustic equation 
in signalling form. Physically, one may think of 1/00 as being the limit of unity 
over the speed of light as this speed goes to infinity, since an infinite photon 
speed was a,ssumed in the derivation of (6). To study the wave phenomena im- 
pIicit in ( 7 ) ,  we shall follow the four distinct propagation speeds at which informa- 
tion can be transmitted through the medium. 

Employing the procedures of Q 2 ,  we follow the isentropic speed in the positive-[ 
direction by setting 8/87 z - 8/86. We thus approximate equation ( 7 )  by 

This equation is essentially hyperbolic in character and contains the isentropic 
signalling operator in the first and last terms. 

Information transmitted with the isothermal speed of sound is studied by 
taking 8/37 - ( 1/&o)a/a6. This allows us to replace (7 )  by 

This equation is also essentially hyperbolic with an isothermal signalling operator 
in the middle term. 

The infinite-speed lower-order equation is similarly obtained by letting 
a/& 2 - 00a/a[. This results in approximating (7) by 

This equation is essentially parabolic in character by virtue of the form of the 
last two terms. The infinite speed is present in the theory because radiative 
information is t,ransmitted basically with the speed of light, which is here as- 
sumed infinite. 
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Since the radiative information in the diffusion limit effectively penetrates 
the medium only to a characteristic depth proportional to 47, this information 
appears to travel much slower than that carried by isentropic or isothermal 
waves, which penetrate to a depth proportional to r. A zero speed is thus to be 
expected in the theory. Following this speed by taking a/& g - 0 a/a(, we obtain 
the zero-speed lower-order equation 

This equation is also essentially parabolic. 
The appearance of the parabolic-like equations (10) and (1  1)  is not surprising, 

since a hyperbolic equation reduces to the normal form of a parabolic equation 
(cf. Courant & Hilbert 1952, p. 157) when the propagation speed goes to either 
zero or infinity. That is, a zero or infinite propagation speed represents a diffusive 
phenomenon. Equations (10) and (11) differ only by the factor yo in the 
second term of (10). The physical reason for this near identity, however, is not 
clear. 

The equations (8)-( 11) comprise the set of approximate lower-order equations 
that replaces the single exact equation (7 ) .  A certain amount of information 
concerning these lower-order equations and their solutions can be obtained from 
the equations themselves by mathematical arguments (cf. Whitham 1959 and 
Cogley 1968). A complete understanding of these still fairly complex equations 
can best be obtained, however, by comparing their solutions for certain example 
problems with those obtained from ( 7 )  by means of more conventional techniques. 

The four boundary conditions needed to form the general well-posed problem 
for the exact equation (7) can be written as follows (cf. Gilles et al. 1969): 
For 6 = 0: 

(12) 

For [+m: 

In conditions (12) and (13) the subscript w denotes the perturbation velocity 
and temperature of the wall, which is located initially at 6 = 0. These condiOions 
are applied at  the origin, as is consistant with linearized theory. As stated earlier, 
the gas is initially quiescent. 

The exact equation ( 7 )  needs the two near boundary conditions (12) and (13) 
to drive the two waves that propagate in the positive-t direction. The lower-order 
equations, however, need only one near boundary condition each to drive one 
outgoing wave. The seeming dilemma as to which boundary condition to use 
with a given lower-order equation is resolved by the fact that two of the lower- 
order equations are needed to replace the exact equation to obtain a solution at  
any given time. The exact boundary conditions (12) and (13) are thus used with 
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the lower-order equations, taken two at a time. The two equations together then 
form a well-posed problem with the two near boundary conditions. The question 
as to which twolower-order equations to use in agiven time-like region is answered 
in the work that follows. 

4. Harmonic waves 
In  this article we study the harmonic solutions of the lower-order equations. 

Harmonic solutions of the exact equation (7) have previously been studied 
analytically by Vincenti & Baldwin (1962), using the exponential approximation 
and the assumption of a grey gas. Long & Vincenti (1967) programmed the 
grey-gas solution on a computer in connexion with their study of radiatively 
driven harmonic waves in a closed tube, and their numerical program is easily 
modified to accommodate the present non-grey formulation. The latter ‘exact’ 
results are used here as a measure of the accuracy of the approximate solution. 

To begin, we ignore the boundary conditions and examine the damping and 
wave speed of the harmonic solutions. As usual, it is convenient to introduce a 
new dimensionless distance and time defined by 5 = wx/aso and i = wt, where w 
is the radian frequency of the harmonic wave. These new variables are related 
to those introduced in 3 3 by 

tvlicre the non-grey Bouguer number is defined by 

5 = Bu,~, T = Bu,~, (15) 

A new potential function @ is also introduced such that 

The dimensionless perturbation velocity and pressure are now given accordingly 

u = - -  P=-- 
1 a$ a@ 

yo ax, at ’ 

by 

The quantity yo is included in the definition (16) to make the present normaliza- 
tion compatible with the previous work of Vincenti & Baldwin (1962) and 
Cheng (1966). For all four lower-order equations we assume a harmonic solu- 
tion in the form @@, f )  = Dexp(dx + i f ) ,  

where D and d are as yet unspecified complex constants. 
Inserting the solution (17) first into the isentropic-speed equation (8), after 

making the transformations (15) and (16), we obtain the characteristic equation 

With d obtained from this equation, the solution of (8) can be written finally as 

$s(Z, f) = Dexp{ - + i ( f -  h,x)}, (18) 
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where the dimensionless damping and wave speed are given respectively by 

6 -  *(Yo- 1)BU.K 
- Bo,( 1 + Bu2,) 

and l / A ,  = 1. 

The subscript S marks these results as being the solution of the isentropic-speed 
equation. The solution ( 1 8 )  represents a right-running wave, harmonic in time, 
damped in distance, and travelling with precisely the isentropic speed. The 
region of validity (with respect to the reduced frequency l/BuN) of this and the 
following solutions will be discussed later. 

The assumed solution (17)  can similarly be used in the isothermal-speed 
equation (9) to obtain the solution (distinguished by subscript T) 

$,(., H) = Dexp { - 6,x+ i(f- A,.)}, ( 1 9 )  

where the damping and wave speed are given by 

and 1 l b  = 1IJro- 

Solution ( 1  9 )  represents a damped, right-running harmonic wave travelling 
with precisely the isothermal speed of sound. 

Using the assumed solution in the infinite-speed equation ( l o ) ,  we obtain a 
quadratic characteristic equation in d, which can be solved by standard methods. 
The resulting solution gives 

em(%, f) = D exp{ - 6 , ~  + i(H - Amx)), (20) 

The upper and lower signs go with 6, and A,, respectively. In this case we have 
a right-running harmonic wave whose damping and wave speed both vary from 
zero to infinity as a function of Bu, for any finite Bo,. Since an infinite wave speed 
was followed in the derivation of ( lo) ,  we expect this solution to be valid only for 
large wave speeds, even though very slow speeds are formally admitted. 

The similarity between (10) and (11) allows us to write down the solution to 
the zero-speed equation ( 1  1 )  by analogy as 

$o(x,H) = Dexp{ -6 , ,~+i ( f -A , ,~ ) ) ,  (21)  

This is a right-running wave with damping and wave speed also varying 
from zero to infinity, although these results would be expected to be valid only 
for small speeds. 

The foregoing approximate solutions, like the differential equations from which 
they come, must be taken two at  a time to obtain the complete solution of a 
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given problem. As explained in detail below, they thus provide a solution of the 

4 . 2  = 

form, 4 = D,exp (d,Z + it) + D,exp (d2Z + il), 
for the right-running waves. 

Equation (22) is also the form of the harmonic solution of the exact equation 
( 7 ) .  Exact values for the complex constants dl,2 can be found from the fourth- 
order characteristic equation, 

which is obtained by inserting the general harmonic solution (17 )  into ( 7 ) .  
The solution of this equation for the two complex roots that represent the right- 
running modified-classical wave ( and radiation-induced wave ( )z (see next 
paragraph) is 

- ( 1  - Bu& - i 16yoBuN/BoN) & (1 - Bu; - i16y,BuN/BoN)z+ 4Bu; (1 - z __ 

I 

(23) 
where the upper and lower signs go with 1 and 2 respectively. The complexity 
of this equation makes it clear why approximate methods are desirable. 

To understand prescisely how the four approximate solutions ( 1  8)-( 2 1)  are 
equivalent to the exact solution (22) and (23), we draw on the nomenclature 
andresults introduced by Vincenti & Baldwin (1962). This is done for convenience 
and is in no way essential for interpreting the approximate solutions. Vincenti & 
Baldwin studied the two harmonic waves in the exact solution by expanding the 
result (23) in powers of (yo - 1). One wave was found to exhibit a small amount of 
damping and to travel at  a speed somewhere between the only slightly different 
isothermal and isentropic speeds of sound. It was therefore called the ‘modified- 
classical wave’. The other wave travelled with both speed and damping some- 
where between zero and infinity. Since this wave has no counterpart in classical 
acoustics, it was called the ‘radiation-induced wave’. As strongly suggested by 
these results, we adopt the hypothesis that our two solutions $s and $r corres- 
pond to the modified-classical wave, while the solutions $m and $o correspond 
to the radiation-induced wave. As the analysis proceeds we shall see that this 
is indeed the case. 

Results similar to the present approximation for the modified-classical wave 
(solutions (18)  and ( 1 9 ) )  have been reported by Khosla & Murgai (1965). Their 
results were obtained by expansions of the exact characteristic solution (23) 
for small and large values of the parameter 16BuN/BoN( 1 +Bug) (their notation 
has been changed to coincide with that of the present analysis). Khosla & Murgai’s 
expression for 8, is identical to that obtained here; their expression for 8, 
is more restrictive. They do not compare their approximation with exact results, 
and their expansions do not produce the presently obtained results for the 
radiation-induced wave (solutions (20) and (21)  ). 
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By taking appropriate limits with regard to Bo, and Bu, in the approximate 
solutions and eliminating the solutions that give physically unrealistic results, 
one can find the ranges of these parameters in which the various approximate 
solutions are valid (cf. Cogley 1968, ch. 5). We can also obtain this information 
by comparing the approximate solutions with exact numerical results, which gives 
at the same time a measure of the accuracy of the approximate method. Here 
we use a combination of these two approaches. 

Figure 1 is a plot of the damping and speed of the modified-classical wave for 
the small value of Bo, = 2 x (strong radiation). The exact results (obtained 
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FIGURE 1. Comparison of results for damping and speed of modified-classical wave, 
yo = 1.4, BOX = 2 x (strong radiation). - , exact; - - - , approximate. (BON is 
defined in J 3.) 

from the numerical program of Long & Vincenti (1967), modified for a non-grey 
gas) are given as solid lines and the approximate results are dashed lines. The 
figure has a broken abscissa, and the exact and approximate results agree to 
five significant figures in the region omitted. 

We see that the approximate solution for the damping is made up of the two 
expressions for S, and S,, which are simple second-order polynomials in l/BuN. 
For a thick gas or small frequencies, the isentropic-speed part of the approxi- 
mate solution is valid. The analytical reason for discarding the isothermal solu- 
tion here is that ST+m as l/BuN-+ 0 for finite Bo,; i.e. given the choice between 
a zero (isothermal) and finite (isentropic) contribution to the modified-classical 
wave, we have of course justification for choosing the latter. As l/BuN increases, 
the isentropic-speed result increases and eventually intersects the isothermal- 
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speed result to form a peak in the damping curve. At this intersection the iso- 
thermal part of the solution becomes valid and becomes more accurate as 
1/Bu, increases. The transition from the isentropic to the isothermal solution 
can also be predicted analytically. If we stay at the Bouguer number of the 
intersection and let Bo, + 0, we find that S, + co and 6, --f 0; since infinitely 
damped waves are neglibile compared to those with zero damping, the isothermal 
solution must become valid at  the intersection. The isothermal solution remains 
valid until we get to large values of l/BuN. Here the damping increases once 
more, with the result that the isothermal damping curve again intersects the isen- 
tropic curve. The isentropic solution thus takes over once again for very large 
l/BuN, and we ultimately obtain zero damping as l/BuN+ co. This second transi- 
tion can be predicted analytically by arguments similar to those used for the first. 

Equating 8, and S, to find the points of intersection leads to a fourth-order 
polynomial in 1/Bu,. For small BoN this polynomial has the approximate positive 
roots, 

1 /BUN Bo,/ 1 6yb P4a) 

and 1/Bu, 2 16yi/Bo,. (24b) 

These roots agree closely with the values of lIBuN for which the exact solution 
for 6 has its maxima. At these intersection points, the approximate value of the 
wave speed is shown in the figure as changing discontinuously from the isentropic 
to the isothermal value, since the wave speed must correspond to the appropriate 
damping curve. The exact value of the wave speed goes through a rapid varia- 
tion near the transition points as shown. 

Although not apparent from figure 1,  S, is a continuous curve with a maximum 
and 6, a continuous curve with a minimum. As the non-grey Boltzmann number 
increases, the curves (and their respective maximum and minimum) move to- 
ward each other linearly with Bo, and become tangent for B o N  of order 16,/y0. 
For the slightly larger Bo, of 20, we obtain the results shown in figure 2. We now 
discard completely the isothermal part of the approximate solution, since an 
intersection never takes place. The exact solution, however, still shows evidence 
of a slight change in wave speed for values of l/BuN around unity. As Bo, 
becomes still larger, the exact and isentropic approximate solutions for the 
modified-classical wave become indistinguishable for all l/BuN. 

In general, the approximate solution for the modified-classical wave gives 
accurate results everywhere except over small regions of 1/Bu, in which transi- 
tions from the isentropic to the isothermal solution take place when BoN < 16,/y0. 
For Bo, 9 16,/y0, only the isentropic part of the approximate solution is valid, 
and its accuracy is good for all l/Bu,. 

Figure 3 presents the damping and wave speed for the radiation-induced 
wave at the previous low value of BoN = 2 x 10-3 (strong radiation). For this 
wave the approximate solutions do not intersect, but the transition from the zero- 
to the infinite-speed results takes place at  values of l /h,  of about 2 as indicated 
by the exact solution. This occurs in the range of values of l/Bu, at which the 
left-hand peakappearedfor the damping of the modified-classical wave in figure 1, 
i.e. for values of 1  BUN given by (24a) .  The transition region follows this value of 



Application to acoustics of Whitham's method 655 

0 - - 1 - _ _  
BUN nouse 

FIGURE 2. Comparison of results for damping and speed of both waves, 
yo = 1-4, BON = 20. -, exact; - - - approximate. 
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l/BuN for all BoN 164y0. Comparison with the exact solution, however, is a 
cumbersome means for fixing the transition region for the radiation-induced wave. 
Consistent with our mathematical assumptions, the analytical criterion to be 
used is that the infinite-speed solution is valid when l/h $- 1, and the zero-speed 
solution when l / A  < 1. 

A typical result for the radiation-induced wave for BoN > 164y0 has already 
been included in figure 2. The complete transition is not visible in this figure, 
but it is clear that it now takes place near l/Bzc, = 1. This location for the 
transition region holds for all larger values of BoN. 

The question of which approximate solution or equation is valid for specific 
ranges of reduced frequency l/BuN has thus been answered. For convenience, 
the results are summarized in table 1. 

Type Approximate solution Region of validity 
A of wave r > 

BON S 16Jy0 BON < 16 Jyo 

1/BUN > 16/B0s 
l/BUN < Bo~/lGy,, Modified- (Isentropic-speed solution (18 )  All 1/BuN 

Not valid classical !Isothermal-speed solution (19 )  B o ~ / l 6 y ,  < 1/BuN < 1 6 / B o ~  

Infinite-speed solution (20)  BUN > 1  BUN > B 0 ~ / 1 6 y ,  
Zero-speed solution (21 )  ~ / B Z G N  < 1 1/BUN < B 0 ~ / 1 6 y ,  

TABLE 1 

Here we have set y t  z yo and y$ z 1 in (24a)  and (24b) ,  respectively, to simplify 
matters. We are at liberty to do this because yo is of order unity and the transition 
regions are not sharply defined anyway. 

We now proceed to the magnitude of the harmonic waves. The dependence of 
the harmonic solution on the boundary conditions is best seen by studying the 
response of the gas to the motion of a constant-temperature wall and to ?the 
temperature variation of a motionless wall. These two driving disturbances can 
be conveniently written as 

and 

A 

Yo 
u W = -e" (velocity) 

-- dTw(') - Beit (temperature), 
di 

where the dimensionless constants A and B are real, and yo is introduced for 
consistency with the existing literature. The corresponding boundary conditions 
on $ are found by putting these expressions into ( 1 2 )  and ( 1 3 )  and making the 
necessary change of variables given by equations (16) and (16). Substituting the 
solution ( 2 2 )  into the resulting relations and carrying out certain simplifications, 
one then obtains two equations for D, and D,, which can be solved simultaneously 
to find the wave magnitudes (absolute value of the amplitudes) for the two special 
cases of (i) A given, B = 0 and (ii) B given, A = 0. The results give expressions 
for (D,/A(,=,, (D,/AIB,, and [D,/BIA,o, (D2/Bld=0, as functions of yo, BUN, d, 
and d,. To this point the procedure is exact. Approximate results for the 
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amplitudes are then found by substituting the approximate values for d, and 
d, in accord with the previous findings; i.e. for the modified-classical wave 

d, = -(&f ih s ) or d, = - (8, +ih,), 
and for the radiation-induced wave 

d, = -(6,+ih,) or d, = -(6,+ih,). 

Which alternative is used in each case depends on the regions of validity as given 
in the table. Since the 6’s and A’s are functions of yo, BuN and Bo,, we finally 
obtain the approximate results for the wave magnitudes as functions of these 
three parameters (cf. Cogley 1968, ch. 5). 

Vincenti & Baldwin also developed approximate expressions for the wave mag- 
nitudes by expansions in powers of (yo - 1) and presented qualitative plots. The 
exact wave magnitudes can be found by using the results for d, and d, obtained 
from (23) by means of the numerical program of Long & Vincenti. 

A comparison between the present approximation and the exact results is 
given by Cogley (1968). The results show that the approximation for the wave 
magnitudes is as accurate as that for the damping and wave speed. This is to be 
expected, since the wave magnitudes are known as exact functions of these 
quantities. Moreover, it is found that the present results provide more accurate 
details than do Vincenti & Baldwin’s results obtained by power expansions, 

The harmonic solution demonstrates that the approximate method is capable 
of providing accurate quantitative results. The knowledge gained about the 
lower-order equations and their regions of validity is also necessary for application 
in the more difficult study of discrete waves. 

5. Discrete waves 
In  this section we set down the formalism for the problem of a discrete wave 

caused by simultaneous step inputs of wall velocity and temperature. We shall 
later use this formalism to obtain the detailed solution for an impusively started 
constant-temperature wall in $ 6  and for a discontinuously heated stationary wall 
in Cogley (1969). 

For background we first examine the exact problem. The exact governing 
equation is (6). The boundary conditions (which apply later also to  the approxi- 
mate solution) are (12)-(24), where the driving disturbances are now 

and 

The initial conditions are homogeneous to all orders, i.e. the gas is initially 
quiescent. 

We proceed formally by taking the Laplace transform of (6). The result is 

42 Fluid Mech. 39 
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and we have introduced the definitions 
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M 5 s + 16/Bo,, N = s(s2 + 16y0s/Bo, + 1). 

The bar denotes a transformed quantity, and s is the independent variable in 
transform space. Subject to the far boundary conditions, the solution of (27) 
(as well as the approximate transformed solution, see below) can be written as 

9 ( f , s )  = cIexP(cIf)+C,Iexp(ClI~), (28) 

where for the exact solution we have 

I” N 1 ’  
2 M  - 2 M  

CI,II = - ~ +-(N2-4s3M)+ . [ (29) 

The subscripts I and I1 in (28) are deliberately different from the 1 and 2 in the 
harmonic solution of $ 4 for reasons that will appear presently. 

The constants CI and CII are found by taking the Laplace transform of the 
boundary conditions (12) and (13) specialized to the disturbances (25) and (26). 
Substituting solution (28) into the transformed results and carrying out certain 
simplifications, we obtain a pair of simultaneous equations, whose solution can 
be written as 

and 

The formal solution of the exact governing equation can be written in terms of 
the inversion formula as 

1 
(32) 

where I? signifies an appropriate Bromwich path of integration. The integral 
represents the superposition of harmonic waves, with s corresponding to the 
frequency. One cannot, however, identify term I exclusively with the modified- 
classical waves nor term I1 with the radiation-induced waves (hence the differ- 
ence in notation from $4). We are therefore not readily able to use the exact 
results for harmonic waves to obtain the exact solution for the discrete wave. 
As we shall explain, on the other hand, the approximate method does allow us 
to identify the terms in the foregoing way and hence to use the results of $ 4  
in our approximate treatment. 

Since cI, cII, CI and C,, are such complicated functions of s, a complete in- 
vestigation of the exact solution (32) is not feasible, except possibly by numerical 
means. Instead, we shall study the problem here on the basis of the approximate 
governing equations developed in (i 3. These lower-order equations can be Laplace 
transformed and solved easily in the transformed variable. The results and their 
regions of validity are as listed below. 
Equation (8) : 

+(L 7) = JF{c1exP (87 + c I t )  +~n,exp(S7 +cuf))ds, 
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Equation ( 9 ) :  

B o N  % 161/y0: not valid; BoN -g 161/y0: BoN/16y0 < 1.1 < 16/BoN.J 

Equation (10) : 

Since Is1 corresponds directly to l/Bu,, (a reduced frequency), the regions of 
validity given after each solution are obtained from the results for harmonic 
waves in table 1 .  When these solutions are inverted, the first two represent a 
superposition of the modified-classical harmonic waves, and the second two 
represent a superposition of the radiation-induced waves. 

The complete approximate solution is the sum of two of the above solutions, 
one from the modified-classical pair and one from the radiation-induced pair. 
Which one is to be used for each pair for a given value of s depends on the region 
of Bo, that is of interest. The approximate transformed solution thus has the 
same form as (28 ) ,  but with the appropriate quantities c,, cT, c ,  or co inserted. 
Specifically, we let cI be either c, or cT, which means that the first term in (28) 
is now associated purely with the modified-classical waves. The quantity 
cII is then replaced by either c, or co, so that the second term represents the 
radiation-induced waves. The notation C, and C,, will be retained, and we 
thus henceforth associate these quantities in our approximate solutions with the 
modified-classical and radiation-induced contributions, respectively. Hence, 
we write the transform of the approximate solution as 

#(t, s) = CIexp { (either c, or cT) t} + CIIexp { (either c, or co) t}, (37 )  

where we note from (30) and (31 )  that C, and CII are functions of c, or cT, and c, 
or co, as well as u,, T,, yo and s. 

Even (37 )  cannot easily be inverted, and indeed we do not want to invert it  as it 
stands. When Bo, is small, for example, cx applies only for Is\ c BoN/16y0 and 
Is1 > 16/BoN. It follows that it is then unnecessary to attempt an inversion of 
(37 )  for all s. Instead, we need only make appropriate expansions for large and 
small s and use the Abelian initial- and final-value theorems for the Laplace 
transformation to interpret the results, These theorems relate the asymptotic 
behaviour of a function f ( t )  as t -+ 0, or co to the asymptotic behaviour of 
j ( s )  as s -+ co or o,, respectively. 

The solutions obtained by this method are general in the sense that they cover 
the entire range of Boltzmann number and are valid for all values of the absorp- 

- 

42-2 
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tion coefficient. They are approximate in that they are restricted to specified 
small-, intermediate- and large-time regions. These regions correspond to the 
frequency regions (or more precisely to the regions of l / B u N )  in which the approxi- 
mate harmonic solutions were shown to be valid (cf. table 1) .  The transition from 
one time region to the next is fairly rapid, just as the transitions in frequency 
space were rapid. The evolution of the wave-form is therefore easily followed, 
and the approximate method does not lose any information essential for ob- 
taining the correct physical view of the overall wave phenomena. 

Since the potential function is not in itself of interest, we will invert only 
the physical quantities, i.e. the perturbation pressure, velocity, density and 
temperature. These quantities are most directly found by use of the properties 
of the Laplace transformation. The pressure, for example, is related to # by 
p = - yoa#/ar, and the transform of this equation is 

p = - Y o b 3  - $ G O )  1. (38) 

Since $ ( [ , O )  can be taken as zero, this provides a simple relation between p 
and 3. The transforms of the other physical quantities, found by similar argu- 
ments, are given by 

(39) 
- 

= a$jag, 

and 

For a mechanically driven discrete wave (u, + 0, T, = 0), Whitham’s quali- 
tative results can be used to predict the form of the solution without solving the 
lower-order equations. The same cannot be done for the radiatively driven dis- 
crete wave (u, = 0, T ,  + 0), since it has a fundamentally different driving mech- 
anism not considered by Whitham. We therefore do not utilize this part of Whit- 
ham’s work or attempt a generalization, but proceed directly to our detailed 
solutions. 

6.  Mechanically driven discrete wave 
Our reconsideration of the mechanically driven discrete wave was conceived 

originally as merely a learning exercise in the application of the approximate 
method. The analysis revealed, however, certain results not obtained by previous 
investigators using other approximate methods. 

The phenomenology that will develop from the solution is summarized schema- 
tically in figure 4. This figure is presented now to  provide a frame of reference 
as the solution proceeds. It is an order-of-magnitude plot in BoY,r plane; it 
shows where the various parts of the approximate solution are valid and where 
certain physical phenomena take place. The detailed solution will be exhibited 
for the case of Bo, B 16,/y0 (weak radiation); for Bo, < 16,/yo (strong radiation) 
only a general discussion will be given. Such discussion is possible with the help 
of figure 4, since the phenomenology of the two cases is similar. The reader 
interested in more detail will find it in Cogley (1968). 

To obtain the solution for Box+ 16Jy, and small time, we appeal to the 
Abelian theorems and expand the appropriate c’s and the C’s (given respectively 
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1. With the definition g = by (33), (35) and (30), (31) with Tw = 0 )  for Is/ 
8(y0 - I)/Bo,, this leads to the following results: 

c, = -s-g+O(g/s2),  

c ,  = - 1 +O(Sy,/Bo,s), 

c, = 

c,, = - __ + 0(uwg/s5).-t 

+ O ( w 7 / 4 >  UW 

uw 9 
84 

s(--S-g) 

i::,. _.I . Boundary layer 

Large-time solution : 
diffusing isentropic wavefront 
plus diffusing boundary layer ~6q 

Intermediate-time ...... 

Intermediate-time solution : 
diffusing isentropic wavefront 

plus boundary layer 

Non-diffusing 
A boundary layer 

damped isothermal 

Strong radiation Non-grey Boltzmann number,BoN Weak radiation 

FIGURE 4. Schematic representation of solution for the mechanically driven plane wavc. 
8, transition regions. 

These truncated expressions can now be used in conjunction with the solution 
(37) and (38)-(41) to obtain the transformed dependent variables. The inversions 
are readily carried out by means of tables (cf. Erdelyi et al. 1954), and the results 
to O(+)  are 

(42) 

(43) 

- (44) 

U 
- N - e-%!3(7-6), 
u W  

P 
- z yo e-Q*X(T - 6) + yo g 
u, 

u W  

T 7 2  

u W  

7 2  
e-5, 

- P N e-g~[l+g(7-6)]S(T-(), 

- z {yoe-07-e-~6[l + g ( ~ - - ) ] } X ( 7 - 6 ) + y ~ g g e - ~ ,  (45) 

t The parameter g is introduccd for brevity, since it is a basic parameter of the modifiod- 
classical contribution. It is not, howevor, characteristic of the  radiation-induced contri- 
bution, so the main over-all parameter is still the Boltzmann number BON. 
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where the unit step function is defined by 
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As indicated in figure 4 this solution is valid for T < dye, or equivalently for T < 1 
to the precision that we are determining the time regions. The terms containing 
the step function are the modified-classical contribution; those with the exponen- 
tial e-6 are the radiation-induced effects. The major portion of the response is 
given by the step wave, which travels a t  the isentropic speed of sound (i.e. such 
that 6 = T )  and is exponentially damped. The radiation-induced contribution 
is small in this time region, affecting only the pressure and temperature to the 
present order. It provides a precursor ahead of the step wave. The temperature 
of the gas at 6 = 0 is not equal to that of the wall (i.e. T(O,T) =/= 0), because 
molecular conduction has been neglected. In  this time region the step wave has 
travelled less than one radiative mean free path, which corresponds t o  6 = 1. 

16Jy, and intermediate time, which corresponds to 
small but finite values of Is\ through the Abelian theorems, is found by expanding 
the expressions for the appropriate c's and the C's in the annular region 16/Bo, < 
Is\ < 1. The restriction that 16/BoN < Is1 is dictated by the structure of co, 
(36), which we want to expand. The expansions give 

The solution for Bo, 

cs = - - ~ + ~ 2 + 0 ( g ~ 4 ) ,  

c,, = - 1 + O(S/Bo,s), 

c,, = --"+O[uw(yo- u g  l)(lG/Bo,s)2]. 
s 

Using the procedure outlined earlier, we can obtain expressions for the trans- 
formed dependent variables. The inversion of the resulting modified-classical 
terms is made by the method of steepest descent. The procedure is standard, 
similar to that used by Lick (1964), and given in detail Cogley (1968). The radia- 
tion-induced terms are again inverted by means of tables. The results to 
O( 16r/Bo,) are 

(47) 

and T = p - - p .  (49) 
The modified-classical contribution (the terms in braces) now represent a diffus- 

ing isentropic wave (note that the third term in the braces forp, p and T is small). 
The wave is no longer damped because the radiation emitted in the region of the 
wave-front (i.e. near E = T )  is re-absorbed within the wave-front, which is now 
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a number of radiative mean free paths thick. This, in fact, is the mechanism for the 
diffusion of the wave. The modified-classical contribution is now seen to provide 
its own precursor as a result of this diffusion. The radiation-induced contribution 
is now felt predominantly behind the wave-front (i.e. for 6 < T )  and represents a 
non-diffusing boundary layer next to the wall. Thus, we see that the radiation- 
induced contribution does not have a continuous identity from the small- to 
the intermediate-time region.? This boundary layer affects only the density 
and temperature to the present order, and this effect grows linearly with 
time. From the temperature solutions for small and intermediate time, we see 
that the temperature discontinuity at  the wall (6 = 0) decreases, to first order, 
linearly with time, i.e. we pick up predominantly the linear part of the variation in 
our expansion. At the end of the intermediate-time region this discontinuity 
essentially disappears (cf. figure 4)) since 97 there approaches O(y,- 1). The 
boundary layer, a radiation-induced effect, thus provides the mechanism for 
ultimately eliminating the temperature discontinuity at the wall, a result that 
is obviously necessary as a consequence of the radiation from the gas. 

In  the limit as Bo, + a, the small- and intermediate-time solutions make up 
the total solution. Taking this limit in (42)-(49)) we in fact obtain identical 
results for the two time regions. The radiation-induced contribution goes to 
zero, and the modified-classical contribution goes to the classical result of an 
undamped isentropic step wave. This is the same result that one obtains by first 
taking this limit in the exact governing equation (6) and then solving the result- 
ing simplified problem. 

The large-time solution is obtained by expanding the appropriate expressions 
for Is1 < 16/Bo, (i.e. for Is[ + 0). The results are 

cs = -s+gs2+~(gs4), 

co = - (BoNs/16): + o( (B0,8/16)8), 

The inversions for the modified-classical terms in the resulting transformed 
variables have already been carried out in the intermediate-time solution; 
those for the radiation-induced terms can again be found from tables. The solution, 
when terms of O( (BoN/16.r)4) are dropped, is 

and T = p - p .  (53) 
t The reasons behind this a t  first disconcerting result are discussed in connexion with 

figure 6 of Cogley (1969). 
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The diffusing wave front given by the modified-classical contribution (in 
braces) is mathematically identical to that observed at intermediate time. 
Physically, however, because of the larger values of 7 and (, the wave front is 
now many radiative mean free paths thick, and the precursor formed by diffusion 
is more pronounced. The radiation-induced contribution, on the other hand, 
has undergone an essential change between the intermediate- and large-time 
regions.? The boundary layer next to the wall now has an effect of constant 
magnitude on the density and temperature at ( = 0, and a region of influence 
that grows as ,,h. It has therefore become a diffusing boundary layer. As time 
increases, the boundary layer becomes thin with respect to the total width of the 
compressively heated gas, which grows as r .  The ratio of the widths of the wave- 
front and boundary layer are independent of time in this region. Characteristic 
measures of these two widths are found by setting Ir - (1 / 2 4 g 5  Ir - # 2 , / 9 ~  = 1 
and (5 '2 )  (BoN/16r)4 = 1, respectively, and their ratio at a given time is 

wave-front width 1r - ( 1  (yo - 1 )  3 
boundary-layer width - 6 (54) 

Thus the widths of the two phenomena of interest are of the same order. More- 
over, the wave-front and boundary layer cause equally large perturbations in 
the temperature. The boundary layer can therefore never be assumed negligible, 
even for weak radiation. 

The complete picture of the response for BoN B 16&, can now be summarized 
(cf. figure 4). At small time the modified-classical contribution is an exponentially 
decaying step wave at  = r ;  the radiation-induced contribution forms a small 
precursor ahead of this wave. For intermediate times, the modified-classical 
contribution gives a diffusing isentropic-speed wave centred about 6 = r. This 
contribution contains its own precursor by virtue of the diffusion. The radiation- 
induced contribution now produces a non-diffusing boundary layer next to the 
wall which increases the density and decreases the temperature, relative to the 
values produced by the passage of the isentropic-speed wave. The velocity and 
pressure, however, are unaffected to the present order. The effect of this boundary 
layer grows with time, so that the temperature discontinuity a t  the wall is 
effectively eliminated by the end of this region. At large times, the isentropic- 
speed wave continues to diffuse around E = r, but the boundary-layer effect 
now has a constant magnitude at  f = 0 and increases in width as 47. Its physical 
effect, however, is a continuation of that observed at intermediate time. 

The results for Bo, 4 16Jyo (strong radiation) will now be described without 
going through the details. At small time (cf. figure 4), the modified-classical con- 
tribution again gives a damped isentropic-speed step wave at  ( = r ,  and the 
radiation-induced contribution again produces a small precursor ahead of this 
wave. The only difference from the situation for Bo, % 161/y0 is that the wave is 
now more highly damped and the precursor is more pronounced owing to the 
increased radiative transfer. For the same reason, the temperature discontinuity 

t The contribution does, however, have continuous physical identity from the inter- 
mediatc- to the large-time region. 
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at the wall is now essentially eliminated by the end of this time region. For 
intermediate times, the modified-classical contribution gives a damped and 
diffusing isothermal-speed wave centred around 6 = T/ Jyo. This wave-front 
has a characteristic width of less than one radiative mean free path throughout 
most of the time region. Much of the radiant energy from the compressed gas 
escapes through the wave front, causing it to decay, and shows up as a precursor 
that is given mathematically by the radiation-induced contribution. A certain 
amount of radiation is also absorbed in the wave front, suppressing any tempera- 
ture variation and causing diffusion. At large times the structure of the solution 
changes. The modified-classical contribution (a diffusing wave front) returns 
to  being centred on the isentropic characteristic (6  = 7). This comes about 
because it is now many radiative mean free paths thick, with the result that heat 
transfer is negligible within the wave front. This contribution produces its own 
precursor through diffusion. The radiation-induced contribution is now felt 
predominantly behind the isentropic wave front, where it provides a diffusing 
boundary layer next to the wall. Within this boundary layer the temperature 
decreases and the density increases relative to the values behind the isentropic 
wave; the pressure and velocity are unaffected to the order of the solution. 
The solution at large time is thus similar to that for Bo, % 16,/y0, except that the 
wave front and boundary layer are now much thicker owing to the higher level 
of radiative transfer. Again, as in the case of weak radiation, the approximate 
method has allowed us to handle the radiation-induced contribution (the 
boundary layer and a part of the precursor). 

Finally, the relation between this and previous work must be mentioned, 
Baldwin (1962) and Lick (1964), using expansions of a solution of the complete 
potential equation, obtained results only for the velocity response. Although 
Lick’s potential solution included only the modified-classical contribution, 
his results can be shown to compare well with the more complete treatments 
of Baldwin and ourselves. This is because, as we have seen, the radiation-induced 
contribution has only a second-order effect on the velocity. Baldwin further 
discussed the temperature correctly in a qualitative way, including the presence 
of the boundary layer near the wall. This layer was also discussed briefly by 
Lick (1967) in a survey article; it would have been missing from his earlier analysis 
because of the absence of the radiation-induced contribution. Moore (1966), 
using the approximation that yo is close to unity, solved for the temperature as 
well as the velocity. His basic approximation has the effect of dropping the 
radiation-induced contribution, which must then be recovered by a different 
expansion procedure. Moore did this for the case of strong radiation, giving an 
account of the development of the velocity and temperature profiles that is 
physically equivalent to that outlined above for Bo, @ 1 6 4 ~ ~ .  By treating the 
modified-classical and radiation-induced contributions simultaneously and 
consistently throughout, the present method is able to obtain results, uniformly 
valid in space, for the development of the flow field for all regions of Bo, and 7. 

In particular, it gives the details of the thermal boundary layer that exists even 
for weak radiation and that is essential for the final elimination of the temperature 
jump at the wall. 
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With the success of the approximate method demonstrated, we are now in 
a position to use it in solving new problems. One such problem is treated in 
Cogley (1969) (the following, companion paper). 
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